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PHILOSOPHICAL TRANSACTIONS.

1. On the Connexion of Algebraic Functions with Awtomorphic Functions.

By E. T. Warrtaker, B.A4., Fellow of Trinity College, Cambridge.
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§ 1. Introduction.

THE ROYAL A
SOCIETY

It is well known that if

Fln2)=0. . . . . . . . ... ()

is the equation of an algebraic curve of genus (genre, Geschlecht) zevo, then w and z
can be expressed as rational functions of a single variable ¢. If, however, the genus
of the curve (1) is unity, » and z can be expressed as uniform elliptic functions of a
variable ¢.

The natural extension of these results was effected in 1881 by the discovery of
automorphic functions; whatever be the genus of the curve (1), v and z can be
expressed as uniform automorphic functions of a new variable.

This result is of great importance in the study of algebraic functions. Instead of
taking z as the independent variable, and studying functions of z on the Riemann
surface corresponding to the equation (1), we can take ¢ as the independent variable,
and consider the functions in the plane of &. We thus avoid the multiformity of the
problem, and can apply the simpler and more developed theory of uniform functions.

Comparatively little of the published work on automorphic functions, however, has
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__llﬂ been written in connexion with the uniformisation of algebraic forms; in describing
< S either groups applicable for the purpose, or the analytical connexions which exist
S ~ between u, z, and ¢. The only automorphic functions known hitherto which have
= been applied to uniformise forms whose genus is greater than unity, are those given
O by certain sub-groups of the modular group (which will only uniformise special
Eg curves, containing no arbitrary constants), and those in which the fundamental

polygon is the space outside a number of non-intersecting circles. These latter have
VOL, OXCIL-—A. B 2.12.98.
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2 MR. E. T. WHITTAKER ON THE CONNEXION OF

been studied by Scmorrry,” WEBER," and BUurNsIDE,} and are capable of uniformising
any algebraic form. As, however, the fundamental polygon is multiply-connected,
the Abelian Integrals of the first kind, and the factorial functions associated with the
algebraic form, are not uniform functions of the new variable.

With regard to the analytical connexion between the uniformising variable ¢ and
the variables u, 2, of the algebraic form, PoiNcari proved that if z is an automorphic
function of ¢, then {f, z} is another automorphic function of the same group, where
§t, 2} is the Schwarzian derivative. ¢ therefore satisfies a differential equation of

the form
{t, 2} = ¢ (v, 2),

where ¢ (u, z) is some rational function of » and 2z ScHOTTKY and WeBER have
determined ¢ (u, z), save for a number of undetermined constants, for the groups
found by them, and Krrin§ has obtained more general results, applying to any
algebraic equation, but with a certain number of undetermined constants left in ¢.

The problem has been formulated by KLEIN as one of conformal representation,
The algebraic form which is given by

Slu,2) =0

can be represented on a Riemann surface of class p, so that, corresponding to every
pair of values {(u, z) of the form, there is a place on the surface. By drawing 2p cuts
we can make this surface simply-connected. Now let z be regarded as a function
of a new variable ¢, having the following properties :—

1°. The dissected Riemann surface is to be conformally represented on a plane
area in the ¢-plane, bounded by 4p curvilinear sides (namely, the conformal repre-
sentations of the cuts, each cut giving two sides).

2°. Of the two sides of the t-area which correspond to any cut, one is to be
derivable from the other by a projective substitution

at + b\

(657 0)-

3°. The group formed by the combination and repetition of these 2p substitutions
18 to be discontinuous.

When a variable ¢ has been found satisfying these conditions, » and z will be uniform
automorphic functions of ¢; and we know by the existence-theorem of PoiNcarE and
Krewv that such a variable does exist, although the existence-theorem does not
connect it analytically with 2 and «. The primary result of the present paper is,
that the uniformisation of any algebraic form can be effected by automorphic func-

* ¢Crelle,” vol. 101, 1897, p. 227.

+ ¢ Gottinger Nachrichten,” 1886, p. 359.

T ¢Proc. Liond. Math. Soc.,” vol. 23, 1891, p. 49.

§ ¢ Jahresbericht der Deutschen Mathematiker- Vereinigung,” 1894-5, p. 91.
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ALGEBRAIC FUNCTIONS WITH AUTOMORPHIC FUNCTIONS. 3

tions of certain kinds of groups, which are described in § 3. These are either groups
whose generating substitutions are of period two, or sub-groups of such groups,
This theorem is made to depend on the well-known theorem that any algebraic form
can, by birational transformation, be represented on u Riemann surface with only
simple branch-points. A method is given for the division of the ¢-plane into
polygons, corresponding to a group generated by real substitutions of period two,
whose double points are not on the real axis; and the genus of the group is found.
The group is of the kind called by Porxcarit Fuchsian ; the polygons into which the
plane is divided are simply-connected, and cover completely the half of the ¢-plane
which is above the real axis. Results are deduced relating to the possibility of
uniformising any algebraic functions by automorphic functions of such groups, and
the analytical connexion of the uniformising variable with the variables of the form.

In §2, certain properties of substitutions of period two are found, which are of use
later. These substitutionsare for brevity termed “self-inverse” substitutions, owing
to the fact that they are the same as their inverse substitutions.

In § 3,a method is given for carrying out the division of the plane into polygons,
corresponding to a group generated by a given set of self-inverse substitutions. It is
proved that the genus of the group is zero, although the group has sub-groups whose
genus is greater than zero.

~In § 4, the automorphic functions of the group are introduced. Since the group is
of genus zero, these automorphic functions are all rational algebraic functions of one
of them ; the conformal representation of the polygons in the ¢-plane on the plane of
this variable is considered. It is shown that the functions which have been obtained
solve the following problem of conformal representation :—Draw from any point P,
in the plane of a variable z, lines (not necessarily straight) to any other points
A, B,C.... This set of rays is to be regarded as the boundary of the z-plane, and
the problem is, to conformally represent the z-plane, thus bounded, on a simply-
connected region in the plane of a variable ¢, in such a way that each of the lines
PA, PB, PC, . . . gives rise to two distinct lines of the boundary of the ¢-region ; and
one of these lines is derivable from the other by a projective substitution

<t fﬁéfcé,>

Tt +d)”

The uniformisation of algebraic functions is afterwards made to depend on this
problem of conformal representation.

In § 5, the analytical relation between the variables z and ¢ is discussed. Tt is
shown that they are connected by a differential equation which is a particular case
of what has been named by KLrIN the *“ generalised Lami’s equation,” and has been
connected by BocHER with the differential equations of harmonic analysis.

- In§ 6, the functions which have been obtained are applied to the uniformising of
algebraic forms, The differential equation in the hyperelliptic case is found to be the
B2


http://rsta.royalsocietypublishing.org/

'\
A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

A
A
Y

A
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

4 MR. E. T. WHITTAKER ON THE CONNEXION OF

same as KLEIN'S “ unverzweigt” differential equation for hyperelliptic forms, save
that a number of constants left arbitrary in Krrin’s equation are found to be zero.
The conditions that 2p arbitrarily given substitutions may generate the group corres-
ponding to a hyperelliptic equation of genus p are found.

In § 7, the consideration of the constants left undetermined in the differential
equation of § 5 is resumed. If an algebraic form of genus p be given, the uniformising
variable is one of o =% variables, which are here termed ¢ quasi-uniformising.” Any
quasi-uniformising variable affords a solution of the problem of conformally repre-
senting the Riemann surface of the form on a plane area whose sides are derived
from each other in pairs by projective substitutions. The differential equations
connecting the uniformising with the quasi-uniformising variables of a-given algebraic
form are obtained.

§ 2. Properties of Self-vnverse Substitutions.

A projective substitution of a variable ¢ is denoted by

\

D
( P et + {Z) ’
where we can always suppose that ad — be = 1.

The substitutions, from which the groups considered in this paper are generated,
) grouj paj g

are such that
a4 d = 0.

Such a substitution is elliptic and of period two; its multiplier is — 1, and it is its
own inverse substitution. For brevity we shall call such substitutions  self-mnverse.”
Thus, if S denotes any self-inverse substitution, we have

SP= 1, and S =871

If T be any substitution, and S be o self-inverse substitution, then T™'ST s a self-
wnwerse substitution.  For the multiplier of a substitution is unaffected by the trans-
formation which changes S into T~'ST.

If there be any number of self-inverse substitutions, and o substitution be formed
Jfrom them, then the substitution wnverse to this is jformed by taking the same substitu-
tions in the reverse order. For if S,, 8, S, ..., are self-inverse substitutions, then
obviously

S,8.8,...8,88,8,88,...888, =1

So if

T=8,8,...5.8,.S,
then
T-'=8,85,...8558,
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ALGEBRAIC FUNCTIONS WITH AUTOMORPHIC FUNCTIONS. 5

The group formed by the combination and repetition of any two projective substitu-
tions can be obtained as a self-conjugate sub-group of a group generated by three self-
wnverse substitutions.

For let

U A (B
T1—<t : > and To_(t’fy.lt+5.z)

be the given substitutions ; let

Lt -+ D "l + b, st + b
Sl — <t, el +‘_1> , S2 — (t Wyl + zj , S:s — <t gii§>

el — Gt — ) et — a
be three self-inverse substitutions ; then we have
S8, (t) _ (cca + 01 )t + (ab — ab;)

(@ — a;rl)t + (a0, + b.c,)
and

3.9 _ (ayy + byey) ¢+ (ashy — asby)
S (¢) = (tyy — ) t + (oty + Docy)
(alg 3e oty T Uply

The equations to be satisfied by the coefficients of S;, in order that we may have

S.S, =T, and 8,;S,=T,
reduce to
(1 — 8)) ay + ybs + Bic; = 0}.
(o2 — 82) @y + yubs + Bocs = 0 ‘

These equations always admit of a solution for the ratios a, : b, : ¢,, if the substitu-
tions T, and T, are distinct. Thus, the substitution S, is determinate; and then S,
and S, can be uniquely determined from the equations

S] = S3T1, Sg = SgTQ.

[Added June 2. In view of the subsequent limitations to substitutions for which
a® 4 be is negative, it should be noticed that these equations may give either a positive
or a negative value for a® + be.]

Now let G denote the ‘group formed from the generatmg substitutions S,, S,, S,,
and let H denote the group formed from the generating substitutions T, and T,.

As T, and T, are themselves substitutions of the group G, the group H will be
either the same as G, or a sub-group of it. We shall now show that H is a self-
conjugate sub-group of G. '

Since 82 =1, and S, = 87, any substitution of G can be represented in the form -

2=28,88S,...8, where p,q,7,s5...0v=1,2,3,
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6 MR. E. T. WHITTAKER ON THE CONNEXION OF

But
8.8, = Tr'T,, 8.8, =T7, 8.8, = T5'T,

SZS3 = TZ—I’ S8, =T, Sssz =T,

Therefore every pair S,S, can be expressed in terms of T, and T..
So if the number of substitutions in 3 is even, the whole substitution can be

expressed in the form
2=TTNT. ..

t.e., it is a substitution of the group H.
But if the number of substitutions in 3 is odd, there will be one substitution S,
left at the end unpaired. Now

S, =178, S, =T,'8,, Sy == Sy,
S0 in any case

S ="Te¢TETYTS . .. TvS,.

So 3 is always either a substitution of H, or else the product of S; and a substitution
of H.

Now let 5, be any substitution of H, and S, any substitution of G.

Then S;'S,S, evidently contains, when decomposed into the substitutions S,, 3,, S,
an even number of them ; for S, contains an even number, and S;' and S, each
contain the same number. Therefore S;'S,S, is a substitution of the group H ; which
establishes the required result, namely, that H is a self-conjugate sub-group.

As an example of this theorem, consider the modular group generated hy the

substitutions
. 1
(¢, t 4+ 1) and <t, —_ t)

This 1s a self-conjugate sub-group of the group formed from the three self-inverse
substitutions

(¢ —t—1), (\t, 1) (5 — ).

As another example, take the group which occurs in the theory of elliptic functions,
which is formed from the generatin. bstitutions

(t, t + 2w,), (t, t + 2w,).

This is a self-conjugate sub-group of the group formed from the three self-inverse
substitutions ’
' (t, ¢ — 2w, — 1), (t, ¢ — 2w, — 1), (¢ c — 1)

where ¢ is an arbitrary constant,


http://rsta.royalsocietypublishing.org/

a
/A

A A

I ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ALGEBRAIC FUNCTIONS WITH AUTOMORPHIC FUNCTIONS. 7

In this exceptional case, an arbitrary constant, ¢, is introduced. The reason is,
that the quantities &, — 8, @, — 8, y1, ¥», all vanish, so the two equations for deter-
mining a;: b, : ¢; reduce to the single equation

c; = 0.

Any group of substitutions which s formed from (k 4 1) self-inverse substitutions
as generating substitutions, always contoins a self-conjugate sub-group which can be
generated from k substitutions.

For let G be a group formed from (£ 4+ 1) self-inverse substitutions S;, S,, S, ... Si0

Then, as before, any substitution of G can be written in the form

Now let
T =58, To =845, ... T, = 8,8,
Then
8,8, = 88,88, = T,

Therefore, if the number of substitutions in X is even, 3 can be expressed in

the form
S =T, T/T/'T,...T,

so 3 is a substitution of the group generated from T, Ty, ... T,
If the number of substitutions in 3 is odd, we have, therefore,

3 =TT%... TS,
and as
S, = TS

we have, in this case,

S = TeT8. .. TPT 'S,

So any substitution of the group G can be expressed either in the form 3, or in the
form 3,8;,;, where 3, is a substitution of the group H, which is formed from
T, Ts ... T.. And as in the case k£ = 2, which has been already discussed, we see
that H is a self-conjugate sub-group of G.

[Added June 2, 1898.—H may, of course, coincide with G; I am indebted to
Professor BURNSIDE for the example,

Si=18=18=1, (888) =1,

in which this happens.]

To find the conditions that a group H, generated from any k arbitrary projective
substatutions, T1, Ty, . .. Ty, may in this way be a self-conjugate sub-group of a group
G formed from (k 4 1) self-inverse substitutions.
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8 MR. B, T. WHITTAKKR ON THII CONNEXION OF
Let
L+ B at + B3, " at o+ B
T, = <t fil-w—«3>, T, = (¢, 222 ) LT = <t LA
! ’ vt + & ) Tyt + 82, ’ ’ ’ vl + &
Let
it 4 b
Sea=(t 57}, andlet 8 =S.,T
et — a)
Then

q = < y (@, + by, )t + (aB, + bsr)>
TN (eay — ay,) b+ (B, —ad))”

11 this 1s a selt-inverse substitution, we have
a (OC;. - 87) + b‘)/; + 0181' == 0.
Thus the coefficients of the substitution S;,, must satisfy the conditions

(1 = 81) &+ yb + Bic =07
(“2—82)a+'}’2b+:82(3:0

(0 — 8o+ y0 + Bie = 0

The elimination of «:b:¢, from these equations gives (k — 2) conditions between
the coeflicients of the substitutions T.

[Added June 2, 1898.—These conditions are suflicient, but are not actually neces-
sary, as it may be possible to generate the group from a different set of substitutions,
for which these conditions are satisfied, although they may not be satisfied by
Ty, Ty oo T ]

We shall, later, take &k = 2p, and show that these (2p — 2) conditions must be

satisfied by the coefficients of 2p substitutions, whose group gives rise to automorphic
functions which uniformise a byperelliptic form of genus p.

§ 8. The Duvision of the t-plane, corresponding to o group formed of Self-inverse
Substitutions with Real Coefficients.

A method will now be given for dividing the ¢-plane into regions, corresponding to

a group generated from a given set of self-inverse substitutions. These regions are
to be derivable from each other by applying the substitutions of the group.
Let .

S = <t, giﬂ)

et ~— a
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ALGEBRAIC FUNCTIONS WITH AUTOMORPHIC FUNCTIONS. 9

be a self-inverse substitution with real coefficients @, b, ¢. Then the substitution
transforms real values of ¢ into other real values, so the real axis in the #-plane is
unaffected by the substitution. If (@4 bc) is negative, it is easily seen that the part
of the t-plane above the real axis transforms into itself; if (a®+4 bc) is positive, the
part of the ¢-plane above the real axis transforms into the part below the real axis.
We shall suppose that our groups are generated only from the former kind of substi-
tutions, so we need only consider the half of the ¢-plane above the real axis.

Agsuming then throughout that (a®+ bc) is negative for the substitution considered
it is obvious that the double points of the substitution are conjugate complex
quantities ; for the double points are the roots of the equation

ct? — 2at — b = 0.

Now draw any circle through the double points of the substitution. This circle cuts
the real axis orthogonally.

Then the substitution transforms the parts of the t-plane outside and inside this
circle into each other.

For, let the double points be

t =1y +13, and t =1y — 15,

and let ¢’ be the point into which any point ¢ is transformed. Then the substitution
may be written

V—q+38 _ t—y 418
V—y—i8 t — oy —4d

This shows that the angle subtended by ¢ at the double points is changed into its
supplement by the transforrnat}ion ; and therefore the circumferences of all circles
through the double points transform into themselves, the part on one side of the
double points transforming into the part on the other side of them. By considering
the whole plane as made up of the circumferences of circles through the double
points, we obtain the theorem.

Now consider the infinite group generated from a number (n + 2) of these self-
inverse substitutions,

t+b C gt by ol -+ D
SI=<t 0_‘3___._1>) Szz(t, @y F—:),...S,Hz::(t, ”‘_ta.j_+z>,

b
ot —a et — a, Cupal — Gy

which satisfy the relation
S]SZS;; o .. Sn+2 = 1.

If »=1, we find that it is impossible to satisfy this relation by self-inverse
substitutions with conjugate complex double points ; and if » = 2, it will be seen Jater
VOL. CXCIL-—A, C
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10 MR. B. T. WHITTAKER ON THE CONNEXION OF

that the method about to be given for the division of the plane into regions breaks
down ; but if n > 2, the relation can be satisfied, in an infinite number of ways, by
substitutions of the required kind. A worked-out example is given below.

[Added June 2, 1898.—The possibility of the construction given below depends on
the satisfying of certain inequalities among the constants of the substitutions; as in
general, when the construction described is carried out, the sides of the polygon may
cross each other. |

Nowlet Dy, D,,. .. D, ,, be those double points, of the substitutions S,, S,, S,, .. . N T
respectively, which are above the real axis.

Let C, be the point derived from D,,, by applying the substitution S, ; or, as we
can write it, let

C,=8,(D,.)
Similarly, let
C,=8S,(C), Co=18;(Cy),...,C=8,,(C)
Then
Cor1 =S8, ... 8.8, (D,
= 8,12 (D), since 9,9, . . . 19,4, = 1,
= Dn+z—

Now, by the last theorem, any point, and the point which is derived from it
by a self-inverse substitution, lie on a circle through the double points of the
substitution.

Therefore D, ,D,C, lie on a circle orthogonal to the real axis.

Similarly C,D.C,, C,D,C,, ..., C,D,,,C,.,, all lie on circles orthogonal to the
real axis.

Therefore a curvilinear polygon can be formed, whose (n -+ 1) sides are arcs of
circles orthogonal to the real awxis and pass through the points D,, D,, Dy, ... D,
respectwvely, and whose corners are the pownts D, 5, C,, C,, ... C,.

Now suppose we transform the polygon by the substitution S,, where » = 1, 2,
...(m4+1). We obtain another polygon, likewise formed of arcs of circles
orthogonal to the real axis, and having contact with the original polygon along the
side C,_,D,C,. The side of this new polygon which is the conformal representation
of C,_,D,C, passes through the double points of the self-inverse substitution S,S,S, ;
and on applying this substitution to the new polygon, we obtain a third polygon,
having contact with the second along the side which is the conformal representation
of C,_;D,C,. 1In this way we can, as every new polygon is formed, surround it with
other polygons, each having one side in common with it.

Now consider what happens at any angular point of the polygon, say D, ., when
we derive polygons in this way. If we derive a fresh polygon by applying the
substitution S,, the derived polygon adjoins the original one along the side D,,,C,.
It now we derive a fresh polygon from the originai one by applying the substi-
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ALGEBRAIC FUNCTIONS WITH AUTOMORPHIC FUNCTIONS. 11

tution S,S,, this second derived polygon adjoins the first along its free side
through D,,,. 1If now again we derive a fresh polygon from the original one by
applying the substitution S,8,S;, this third derived polygon adjoins the second
along its free side through D,,,. Proceeding round D,,, in this way, we obtain
at last a polygon which is derived from the original one by the substitution
SoiS, - S80S, 08, . L L 8.8,

But since

Sz+lb7, o S S - Sz+27 and S;ZH—Z = 17

this is the identical substitution; in other words, the 2 (n + 1)™ polygon as we go
round A s the original polygon. A

In the same way we can prove, that at every corner 2 (n 4 1) polygons meet.
The sides of the polygons are all portions of circles orthogonal to the real axis. As
we approach the real axis, the polygons become smaller and more crowded together.

If from the original polygon we derive others, by transforming «t with all the
substitutions of the group generated by S,, S,, ... S, ,,, we cover the half-plane once
and only once. So the original polygon is a ‘ fundamental region” for the group of
substitutions.

In the annexed figure, the polygons in a portion of the plane are drawn to scale
for the group formed from the substitutions

/Bt — T4 2% — 5 5t — 29
§, = — S, = (§, ——— 3 ==
Sl (t’ t——5>’ 2 <! t—2>’ S‘; <t’ t-—-5>’
o _ [, 253 — 2061 _ ([, Bu—16TR\ (281t — 4786)
=\ s =2 S N ST 3 o=\" i Zest )

which are self-inverse substitutions satisfying the required relation
b1828384S5S6 = 1.

Here n = 4 ; the double points are given by
Di=547,D,=2+44 D=5+ 2, D, =72+ /553, D, = 12 + /15,

The vertex at the intersection of the S, and 8, circles is at the point ¢ = 1 + 4.

Since the polygons are conformal representations of each other, they are equi-
angulm to each other.

From the construction of the polygon, all the angular points are equivalent in
respect of the group.

The sum of the angles round any vertex is 2a ; but these angles are the conformal
representations of the angles of a polygon, taken twice. Hence the sum of the angles
of any polygon is .

¢ 2
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ALGEBRAIC FUNCTIONS WITH AUTOMORPHIC FUNCTIONS, 13

Let ¢t = u + w; if we measure the distance between two points, in the non-
|2

Euclidian sense, by [ - taken along the circle orthogonal to the real axis and joining

the points, then we can easily prove that the lengths of corresponding sides of the

du dv
7~

polygons are in this sense all equal ; if we measure the area of any region by “

taken over that region, we can show that the areas of all the polyguns are also in
this sense equal ; and the areas and lengths of corresponding regions and lines in the
polygons are all equal. The substitutions by which the polygons are dervved from
each other are, in this non-Buclidian sense, simple displacements, which leave their
dimensions unchanged.  All the theorems of LoBATOCHEWSKI'S geometry hold if, where
LoBATCHEWSKI uses the word ¢ straight line,” we understand “ circle orthogonal to
the real axis.”

Thus, in non-Euclidian phraseology, we can say that the network of polygons has
been obtained by drawing a rectilinear polygon of (n -4 1) sides, deriving new poly-
gons from it by turning the polygon through an angle 7 round the middle points of
its sides, and deriving fresh polygons from these by the same process, until the whole
non-Huclidian plane is covered. This enables us to see that our figure s the natural
extension of the division of o whole plane into parallelograms,so familiar in the theory
of elliptac functions. For that division can be obtained by drawing any rectilinear
triangle in the Huclidian plane, deriving fresh triangles by turning it through an
angle 7 round the middle points of its sides, and deriving new triangles {rom
these by the same process, until the whole Euclidian plane is covered. The groups
for which -the elliptic functions are automorphic are sub-groups of the groups so
obtained ; and similarly the groups, whose automorphic functions are required in the
uniformisation of algebraic forms of genus higher than unity, are sub-groups of the
group we have found. The reason why we have to pass from Fuclidian to non-
Euclidian geometry is, that in the Euclidian plane it is impossible to obtain a recti-
linear figure with more sides than three, the sum of whose angles is .

If to the original polygon we apply the substitution S,,,, the point D, is
unchanged, and the arcs D, ,,D,,, and D,,,C, are transformed into each other. So
the parts of the boundary of the polygon which correspond to each other in the
transformations of the group are D,,,D,,, to C,D,,,, C,D, to C,_,D,, ..., C.D, to
D,..Dy, respectively. If now we suppose the polygon lifted up from the plane, and
these corresponding ares pieced together, we obtain a simple closed surface, without
multiple connectivity.

Therefore the genus (genre, Geschlecht) of the group (as defined by PoINcaRrg) s
zero.  The group however may have, and will in fact be proved to have, sub-
groups whose genus is greater than zero.
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§ 4. The Automorphic Functions of the Group.

From the fact which has just been proved, that the genus of all groups of the
kind we have found is zero, we know that the algebraic relation between any two
automorphic functions of the group is of genus zero ; therefore all the automorphic
Junctions of the group can be expressed as rational functions of a certain one of them.
We shall denote this one by 2. ,

First, let us see what degree of arbitrariness there is in the choice of the function z.

If a, b, ¢, d, are any four constants (which can without loss of generality be taken
to satisfy the relation ad — b¢ = 1), then

az + b

g+ d
is another such function as z.  Hence the function z contains three distinct arbitrary
constants.

z takes every value once, and only once, in each polygon of the figure. The three
arbitrary constants may be taken to be the place of its zero, the place of its infinity,
and a multiplicative constant.

Now counsider the conformal representation of o t-polygon on the z-plane.

The function z takes every value once in the polygon ; therefore the conformal
representation of the polygon will cover the whole z-plane. Also, z takes the same
value, say e,,; at each of the corners of the polygon; suppose that z takes the
values ey, €, €, ... e, at the points D), Dy, D, ... D, ,,, respectively.

As t describes the boundary of the polygon, beginning at D,.., z begins with the
value ¢,,, and varies until, at D,, the value ¢, is reached ; then, retracing the same
series of values, z returns to the value ¢,,, at C. Then at D, the value e, is reached,
and at C, z takes the value ¢,,, again ; and so on round the polygon.

Thus the conformal representation of the boundary of the polygon is a series
of lines (not necessarily straight), radiating from the point e,,, to the points
€1y €9, Csy .+ o €y py, in sUccession.  L'he polygon corresponds to the whole z-plane, with
this regarded as boundary. Small arbitrary variations in the form of the lines
radiating from ¢,,, to e, €, ... e,,,, merely correspond to small arbitrary variations
in the boundary of the polygon.

Thus we see the nature of the solution of the problem : To conformally represent the
whole plane of a variable z, bounded by « set of finite lines radiating from a pownt, on
a curvilinear polygon in the plane of « variable t; this polygon being the fundamental
region of an infinite discontinuous group of real projective substituions of the
variable t, and z being an automorphic function of the group.

We may note that dz/dt is zero at each of the double points. For if ¢ and ¢ ave
two points very near a double point, which are transformed into each other by the
substitution corresponding to the point, we have approximately

dt’ = — dt.
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ALGEBRAIC FUNCTIONS WITH AUTOMORPHIC FUNCTIONS. 15

Thus dz/dt has values equal in magnitude, but opposite in sign, at the points
t and ¢’ ; and therefore, making ¢ and ¢’ to coalesce in the double point, dz/dt is zero
at the double point.

Let us now enumerate the constants at our disposal, in order to see the corre-
spondence between the arrangement in the z-plane and the group of substitutions.

The t-figure is determined by #n -+ 2 self-inverse substitutions, S, S, ... S, .
satisfying the relation

888 . .. Sie=1 . . . . . . ...

There are three real constants, o, b, ¢, in each substitution. But by reason of the
relation
aF 4 b= —1,

‘these three are only equivalent to two. Thus from the (n 4 2) substitutions we
get (2n + 4) real constants.

The relation (1) defines three of these constants in terms of the rest. Also, this
group is not essentially different from one which is obtained by transforming it with
any real substitution, which shows that three more of the constants are non-essential.
So there are altogether (2n — 2) essential real constants involved in the t-figure.

Now considering the z-plane, there are n -4 2 points e, ¢,, . . . €,,,; and each of
these is defined by two real co-ordinates, giving 2n -4 4 as the number of real
constants. But we can make a homographic transformation of the plane, so as to
transform any three of the points into three arbitrary points. This shows that 6 of
the constants can be disregarded as non-essential. So we have (21 — 2) essential
constants in the z-figure.

Hence the number of essential constants s the same wn the z-figure as in the
t-figure.

[Aopep June 2, 1898.—This does not in itseli’ prove that for every z-figure there
exists a corresponding ¢-figure; but the general existence-theorem of PoiNcark and
KLEIN can be applied to complete the proof.]

Hitherto we have derived the z-figure from the ¢-figure. The next section is
chiefly concerned with the converse problem of deriving the ¢-figure from the
z-figure.

§ 5. The Analytical Relations between z and t.

The analytical relations between z and ¢ are of two kinds; () those which express
zin terms of ¢ and the constants of the substitutions, and (8) those which express
¢t in terms of z and the quantities e, €,, . . . €, ;2

The Thetafuchsian series of PoINCcARE solve the first problem for all classes of
automorphic functions. We shall therefore only discuss relations of the kind (8).

As any quantity of the form (at + 0)/(ct 4 d), where a, b, ¢, d, are arbitrary real
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16 MR. E. T. WHITTAKER ON THE CONNEXION OF

constants, is a solution of the problem (8) equally with ¢, we shall expect ¢ to be
given by a differential equation of which the general integral is (at 4 b)/(ci + d) ;
in other words, by a differential equation of the form

st 2} =R (),

where R (z) is some function of z, and

AP |, (d2)dey
T (defdey ta (dz/di)*

{t, 2} =

is a Schwarzian derivative.

As {¢, 2} is unaltered by a change of ¢ into (at -+ D)/(ct + d), R (2) is an auto-
morphic function of the group, and therefore R (2) @s a rational function of z.
We have to find R (2).

Considering the conformal representation, we see that z and ¢ are regular functions
of each other, except near the points z = e, ¢, . . . ¢,45, 0. Hence, except at these
special points, § {¢, 2} is a regular function of z, and we shall not get an infinity of

dz
dt

Near z = o (supposing for the present that no one of the quantities ey, e,, .. . e,,q,
is infinite), z and ¢ are uniform tunctions of each other, so

R (2). Aszis a uniform automorphic function of #, — is infinite only at z = oo,

a
t— 4,

R

4+ b4 c(t —t) 4+ ..., where a is not zero.

This gives
; 3¢
L ¢, 2} :;;(twto)“—{wu .

1
Hence at 2z == o, L {t, 2} must be zero to at least the order E

Near z = e,, z is a uniform function of ¢, but dz/ds is zero. So near this point,
z—e,=c(t—t)+d(t-—1t)+...

where ¢ is not zero, since ¢ has at the point a simple branch-point, considered as
a function of z.
This gives
3 3
(I S A T
CRURY 16¢* (¢ — t,)* Fo 16 (2 — e, +

Thus the only infinities of the rational function R (z) are at the points ey, ey, . . . €,,,;

and these points are poles of the kind just found.

Hence
nt 2 1 w2

+ 3y ),

=l (‘3 - 61')2 =148 — &
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where P (2) is a polynomial in z, and a’s are constants. Now at z = o we must

1 .
have a zero of at least the order;;. Hence P (2) = 0; and since near z = o, R (2)

can be expanded in the form

_ A+2 1 2¢ n+2 /g a.e a.el
R(z) = % S+ =54 e aliralls Dol SN
() lqEL Z?' z3+ +7‘§l z+z2+z3+ H
. : . 1 1 1 . i
by equating to zero the coefficients of —, oy and o respectively, we obtain
n+2
% a,=0,
r=1
n+2 3 (n + 2)
S e = — ——t
r=1 16 i
n+2 n

+2
2 3
3 ae'=—% 3 e.
r=1 r=1

These conditions enable us to write R (z) in the form

R (z) _ _13:_ n§2 1 + .‘36_ —_ (n + 2) 24 n. zewzn—l + clzn—-z + o+ Cos ’
(z - 61) (Z - e2) e (z - en+2)

¢ r=1 (z - Gr)2

where ¢,, ¢y, . . . ¢,_; are constants as yet undetermined.
Hence the required analytical relation between t and z is

n+2 1 — n+2 z"+'rb.>:,8..z”‘1+cz"_2+...—I—(:_
Bihsd =53 ot e .
7 . (Z - 61) (z - 62) L] (Z - 6n+2)

It will be seen that this is the differential equation for the quotient of two
solutions of a linear differential equation of the second order with (n + 2) singu-
larities, at each of which the exponent-difference is 4. Such linear differential
equations have been studied by KimIN,* as being the generalisation of Lami’s
equation; and BocmER'S book, ‘Ueber die Reihenentwickelungen der Potential-
Theorie’ (Leipsic, TEUBNER, 1894), is chiefly concerned with them. BOCHER proves
that the differential equations of harmonic analysis are limiting cases of them.

We can transform this equation to a simpler form.

Put
dz
e N fer ecrnl

8o w 18 a known function of z.

* ¢(Qottinger Nachrichten,” 1890, pp. 85-95.
VOL. CXCII.—A, D
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18 MR. E. T. WHITTAKER ON THE CONNEXION OF

Then the differential equation becomes

7t — 4 n(n—2)"t2 o .
Lit, w} = TEEas (16 )Ele,..z’ " detdy L dy s

where d,, d,, . . . d,_,, are new undetermined constants replacing the c’s.
This can be written

1 _ n—2 dizda? et s
2 {t: 7,0} - 8(’)’0 + 1) olz/dw + klz + kzz + v + kn—la

or
n—2 1 du - 1o o= |
"% {t, ’L{)} - 8<n + 1) ;‘(?Z;)‘Z + klz z + /(22 8 + DR + k'ﬂ,—l . . . (J),

where

w=(r—0)(z—e). .. (2= ),

and where k,, k,, . . . k,_; are new undetermined constants, replacing d,, ds,. . . d,_,.
If 2 has its infinity at a double point of one of the substitutions, we get a slightly
different form of the equation.
In this case, one of the ¢’s is infinite. - Let ¢,,, = . Then, near z = o, the
expansions are of the form

¢
(=1,

A

3
+... and R(z)=16z2+...,

whence, by the same reasoning as before, we find that

n+1 1 — ,nzn—vl _!_ Glz’n-—2 + . + 0n~—1

{t, 2} = —%— 7‘51(2”:‘(;;)‘2 -+ '1%@ —e)(@—0)... (2 — @n+1).

w_! dz )
- V(i — 0) (2 =€) ... (2~ €y11)

Doj=

Put

Then the equation becomes

v(n— 2) - n—
=202 Dot L dp A L+ d,

where again the quantities d,, d, . .. d,_,, are undetermined constants.
This can be written

. =2 ddi? n—2 n—3
2 {t,w} —8(n + 1) dz/dw TSRS R

or,
1 n—2 1 du T . ,
9 {t, W} —_— 8 (’I’L "1‘) "u' d’l[ﬂ + ]b14 + 702Z "I" DR + kn—l . . . (2),

where
w=(z—e)(z—e)...(z— )
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ALGEBRAIC FUNCTIONS WITH AUTOMORPHIC FUNCTIONS. 19

The differential equations (1) and (2) determine ¢ in terms of z in the two cases
respectively. ~

The constants £, ks, ... k,_;, are as yet undetermined. The reason is, that we
have not yet made any use of the condition which in fact does determine them ;
namely, that all the projective substitutions, which ¢ undergoes when the independent
variable z of the differential equation describes a circuit round one of the singularities,
are such as to leave unchanged a certain circle. This circle is, in the figure we have
drawn, the real axis of the variable ¢, which is unchanged by all the substitutions of
the group ; but it may more generally be any circle in the ¢-plane. This condition
will be shown in §7 to be equivalent to the determination of (n — 1) complex
quantities, which are the counstants &, %, ...%,_;. But a further consideration of
this is deferred to §7. For the present we shall suppose %, k,, . . . k,_, determined in
such a way as to give the required representation.

§ 6. Application of the Preceding Theory to the Uniformising of Algebraic Forms.

We have proved that the genus of groups of the kind we have found is zero, and
hence the automorphic functions of the group as it stands will not uniformise
algebraic forms whose genus is greater than zero. But we can find sub-groups of
the original group, and these will be found to be of genus greater than zero.

The process of deriving these sub-groups is analogous to the method of building
up a Riemann surface of any genus by superposing a number of plane sheets and
connecting them along branch lines. We join {ogether a certain number of the
polygons in the figure, and regard them as forming one new polygon. This will, in
certain cases, be the fundamental polygon of a sub-group of the original group, and
may have a genus greater than zero.

Consider a double polygon, made up by taking together the original polygon, and
the polygon derived from it by transforming with the substitution 8,,,, and erasing
the boundary which separates them. The new polygon has 2n-sides. ~ By evasing
all the lines corresponding to the line already erased, we obtain a division of the
half-plane into 2n-gons. The opposite sides of the 2n-gon are easily seen to be
transformed into each other by the n substitutions

T, = Sn+lSls T, = Sn+1SZa vo o T, = 8,48,
respectively.

Thus 2n-gon ts & * fundamental region” for the group generated from the substi-
tutions Ty, Ty, . .. T,,  'We proved in § 2 that the group generated by T, T,, ... T,,
is a self-conjugate sub-group of the group formed by S, S,,...S,.,; and that any
substitution of the latter group is equivalent to a substitution of the former group
acting on either the identical substitution or on 8,,;. This corresponds to the fact
that a point in any of the derived 2n-gons can be obtained by transformation with

D 2
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20 MR. E. T. WHITTAKER ON THE CONNEXION OF

the substitutions T from a point in either the original (n + 1)-gon or the (n + 1)-gon
derived from this by the substitution S,, ..

We have, therefore, obtained a new division of the balf-plane into 2n-gons, and
found the group of substitutions corresponding to it. We can now find the genus p
of this group.

The opposite sides of the 2n-gon are transformed into each other by substitutions
of the group. If we suppose the 2n-gon lifted up from the plane, and opposite sides
pieced together, we obtain a surface of connectivity (n + 1). If n is even, this
surface is of genus p where n = 2p. In what follows we shall suppose n even.

Hence, the algebraic relation between any two automorphic functions of this group
18, mn general, of genus p = in.

The function 2, which has been obtained, takes every value once in each
(n 4 1)-gon; and therefore it takes every value twice in each 2n-gon. But this is
the condition that the algebraic form, made up of the automorphic functions of the
group, should be hyperelliptic.

Hence, the algebraic form, which s made wup of the automorphic functions of the
group, s hyperelliptic, and of genus $n ; and, as z is a variable which takes every
value twice in each polygon, the form consists of rational functions of z and u, where
w is a function of z defined by an equation

’Lbz == (Z w— CLI) (Z — @2) o e (Z — (Ln+2)7

where a,, @, . . . @,,, are constants to be determined. But the function

Viz—e)(z—e)...(z —e,us)

is an automorphic function of the group, for it has the same value, save for a change
of sign, at corresponding points in adjacent (% 4 1)-gons, and therefore the sume
value at corresponding points in different 2n-gons.

Hence
Uy = €1, g == €y, . « . U0 == Cpyo,

and we see that the automorphic functions of the group generated from the substitu-
tions Ty, Ty, . . . T, are the algebraic functions of the form defined by the equation

wW=(z—e)(z—¢6)...(2— e,

Thus we have the solution of the problem, “ To find o wvariable of which the
functions rational on the Riemann surface of the equation

wW=(z—e)(z—e). .. (2= )
are uniform functions.”
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ALGEBRAIC TUNCTIONS WITH AUTOMORPHIC FUNCTIONS. 21

We could have foreseen this by regarding the problem as one of conformal repre-
sentation. The algebraic functions can be regarded as uniform functions on a
Riemann surface which covers the z-plane twice, the branch-points being at the
points ey, ¢, ... €,,,. Now join the point e,,, to each of the points ey, ¢y, es,. . . €,,..
Then each of the sheets, regarded as an infinite plane bounded by these lines, is
represented conformally on one of the (n 4 1)-gons in the ¢-plane; by taking two
adjacent (n 4 1)-gons, we obtain a 2n-gon, which corresponds to the fact that by
taking the two z-planes, and connecting them along the line e¢,,,e€,,;, we obtain the
Riemann surface as dissected by n cross-cuts.

The analytical connexion between the variables in a hyperelleptic form and the
uniformising variable ¢ is therefore given by the equations of §5. It can be shown
that the differential equation found there is, as might be expected, one of Kumin's*
“unverzweigt ” differential equations for hyperelliptic forms. It can be obtained by
equating (p — 2) of the arbitrary constants in KLEIN’S equation to zero.

There are p integrals of the first kind connected with the form. It is easily
proved that if v is one of them, then » undergoes a projective substitution of the

form
(v, ¢ — ),

where ¢ is a constant, when ¢ is transformed by one of the generating substitutions
of the group.

The theory of Abelian integrals of the form can be developed with ¢ as independent
variable ; but developments of this kind are outside the scope of this paper.

One consequence of the results just obtained is that we can find the conditions that
2p arbitrarily given projective substitutions may generate the group corresponding to
a hyperelliptic equation of genus p.

Let the substitutions be T,, T, . .. T,,, where

al + b,
L= <t’ et + d4.> )

On comparing the results of this section with those of § 2, we see that the condi-
tvons may be expressed wn the form

o, —d, b c|=0, (rst=1273,...2p).
as — ds bs Cs
a, —d, b ¢
[Added June 3, 1898.—These conditions are not, however, proved to be strictly

necessary, since the group may be generated by another set of substitutions to which
these conditions apply, although they do not apply to T,, Ty, ... T,. And the

* ¢ Gottinger Nachrichten,” 1890, p. 85.
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22 MR. E. T. WHITTAKER ON THE CONNEXION OF

inequalities expressing the conditions that the sides of the generating polygon do
not cross must also be satisfied. ]

In all our work hitherto it has been assumed that p > 1. The case p = 1 s excep-
tional ; algebraic forms of genus unity cannot be uniformised by groups of the kind
we have found. For if the construction which has been given were possible for p=1,
we should have, as the fundamental polygon of the group, a triangle whose sides are,
in the non-Enclidian sense, straight lines, and the sum of whose angles is =. But
this is impossible, for in LOBATCHEWSKI'S geometry the sum of the angles of a
triangle is always less than 7. When the sum is equal to = we arrive at the limiting
case of Kuclidian geometry. Therefore the construction fails, and we have to devise
instead a construction in which Euclidian geometry replaces non-Euclidian. We take
four substitutions, S,, S,, 3, S,, satisfying the relation

913,95, = 1,

which are self-inverse and leave the Euclidian absolute unchanged, 4.e., which are all

of the type
(¢, c¢—1),

where ¢ is a complex constant. By reasoning exactly analogous to that in § 3, we
see that these substitutions generate a group, to which corresponds a division of the
plane into rectilinear triangles. The sub-group which is got by taking adjacent
triangles in pairs gives a division of the plane into parallelograms ; and this is the
well-known group of the doubly-periodic functions, which uniformise algebraic curves
of genus unity.

The following shows how the former construction breaks down in this case.

If possible, let S, S,, S;, S,, be four self-inverse substitutions with real coefficients
satisfying the relation

S182S384 = 1.
Then if
i+ 0
S‘ — (t’ aﬂ’ r>
! et — a,)’
we have
S S,S (t) = (alazas + 0615263 + a3b162 - a’zblcs)t + (alazbs - 0&1[)2003 - blczbs + blagas)
D203 =

(eastts + oty — aiCotty + ayancs) t+ (Gateby — cibyty — a,6by — ayanay)

This has to be a self-inverse substitution, since S, is self-inverse.

So
,byC5 + bysc, — azhics + ciaby — eib.ay — a,cb; = 0,
or
o Oy, az | = 0.
by b, b
¢t G G


http://rsta.royalsocietypublishing.org/

a
J,
A

/—%

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I~
b \

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ALGEBRAIC FUNCTIONS WITH AUTOMORPHIC FUNCTIONS. 23

Let v, + 48, and vy, — i3, be the double points of S,,
then
=%, b,=—(2+38), c.=1
Therefore
lyi4 8 v+8 y+8&|=o0.
b Yo Vs
1 1 1

This shows that the double points of all three substitutions lie on a circle
orthogonal to the real axis. Since S,8,S, is a self-inverse substitution, the double
points of S, lie on the same circle.

Hence, if we attempt to construct the fundamental polygon, we find that all its
angular points lie on the same circle orthogonal to the real axis, and therefore all its
sides coalesce, and its area is zero. This explains why the method fails in this case.

We now proceed to the uniformisation of algebraic forms which are not hyper-
elliptic. These only occur when the genus is greater than two.

If we are given any algebraic form of genus p, it is known that it can by birational
transformation be represented on a Riemann surface of which all the branch-points
are simple, i.e., only two sheets interchange at any branch-point.

Let f(u, 2) = 0 be an algebraic equation corresponding to this surface. Suppose
the branch-points are at the values of z for which z == ¢,, e, e;, . . . ¢, ,, respectively.
It may of course happen that for some of these values of z there are several branch-
points superposed on each other on the Riemann surface.

Now in the z-plane, join the point e, ,, to each of the points ¢, e, . .. €,.,1, and
conformally represent this, in the plane of a variable ¢, on the fundamental polygon
of a group from (n 4 2) self-inverse substitutions, as before explained.

Then, as before, z is a uniform function of ¢. At each of the points z = e, e,, .
€, 10 S2Y €, u 18 expansible in a series of ascending powers of either (z — e,)! or
(2 — e,), according as the point z = e, happens to be a branch-point or not in the
sheet in which the point is situated. But near this point (z — e,)! is expansible in a
power-series in terms of (¢ — ¢,), where £, is the value of ¢ at the point; so in either
case, u is expansible as a series of ascending powers of (¢ — #,) ; that is, » has no
branch-point, considered as a function of 7, at this point.

But since z is a uniform function of ¢, the only points where u can have branch-
points, considered as a function of ¢, are the points where u has branch-points
considered as a function of z; that is, the points e, e, ... ¢€,,. Hence, v is a
uniform function of ¢.

Thus, any algebraic curve can be uniformised by means of groups of substitutions
Jormed from self-inverse substitutions.

It will be seen that a great similarity exists between the place occupied by self-
inverse substitutions, in the theory of groups of projective substitutions, and the
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place occupied by branch-points at which only two branches interchange, in the
theory of Riemann surfaces; the usefulness of the method of self-inverse substi-
tutions depends on the fact that algebraic forms can be represented on Riemann
surfaces with only simple branch-points.

Algebraic functions are not, however, the only ones which can be uniformised.
Poincari® has proved a general existence-theorem that, if wy, u, . .. u,, ave any
multiform analytical functions of a variable z, a variable ¢ always exists, such that
2, Uy, Upy + . . Uy, are uniform functions of £ The existence-theorem, however, does
not connect ¢ analytically with the other variables. If wu;, u, ... u,, are transcen-
dental functions of z, their multiformity will not in general be capable of being
expressed by simple branch-points, and so the groups generated by self-inverse
substitutions cannot be used.

§ 7. The Undetermined Constants in the Differential Equation connecting z and t.

In § 5, certain constants %, &, ... k,_,, in the differential equation connecting
z and ¢, were left undetermined. It was there explained that they are to be
determined by the consideration that the group of substitutions of ¢ leaves unchanged
a fundamental circle. In general, however, arbitrary constants occurring in similar
differential equations cannot be determined by this consideration, as the group may
be ¢ Kleinian,” .e., it may not conserve a fundamental circle. The following dis-
cussion approaches the subject from this more general point of view.

The Riemann surface, corresponding to the algebraic form f(u, z) = 0, can be
made simply-connected by drawing 2p cuts, and the problem of finding the uni-
formising variable ¢ can be divided into two parts, as follows :—

1. Finding all the variables 7, which are such that the dissected Riemann surface
is represented on the 7-plane by a curvilinear polygon, whose 4p sides can be
derived from each other in pairs by projective substitutions of 7.

2. Selecting from among these variables 7, a variable #, which is such that the
group generated from these projective substitutions is a discontinuous group.

We shall call the variables 7 quasi-uniformising variables, to distinguish them
from the true uniformising variable Z.

In the case of the groups we have found, the differential equution of § 5 gives
the quasi-uniformising variables; the determination of ki, ks, . . . k,_y 1s equivalent
to selecting the uniformising variable from among them.

In this section the connexion between the uniformising and quasi-uniformising
variables is considered for more general groups.

As an example of the nature of quasi-uniformising variables, take the algebraic
equation

u = 42" — gz — ¢

* ¢ Bulletin de la Société Math. de France,” 1883, vol, 11, p. 112.
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To this corresponds a Riemann surface of two sheets, which can be resolved
by two cuts into a simply-connected surface.

Let P be the Weierstarssian elliptic function associated with this curve ;
and w,, w,, its periods.

Consider # and 7z as functions of =, where

u = P’ (log 7), z = P (log 7).

In the r-plane, form a curvilinear parallelogram ABCD, of which the side CB
1s derived from AD by the projective substitution

(7, e”7),
and the side CD is derived from AB by the projective substitution
(7, €"1).

Then within this parallelogram ABCD, the dissected Riemann surface corre-

sponding to the curve
w = 42° — gz — g,

is conformally represented; the sides AD, CB of the parallelogram correspond to
the two edges of one cross-cut, and the sides AB, CD to the other; and, as we have
seen, the opposite sides of the parallelogram are derived from each other by projective
substitutions. But in spite of this, v and 2z are not uniform functions of 7. The
reason is, that 7 is only a quasi-uniformising variable ; when we derive all possible

polygons from ABCD by applying the group of substitutions generated from
(v, e7r) and (7, e),

the polygons so derived cover the plane more than once.

The connexion between the uniformising and quasi-uniformising variables for any
algebraic form is given by the following theorems.

If t is a uniformesing variable of an equation

S(w, 2) =0,

and T is any holomorphic Thetafuchsian function of ¢ of order two, then the quotient
of any two solutions of the dufferential equation

:—ZZ%-—I—T'I):O e € )
18 a quast-uniformesing variable.
The term ¢ holomorphic Thetafuchsian function of order two” may require some
explanation. '
VOL. CXCIL-—A. E
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26 MR. E. T. WHITTAKER ON THE CONNEXION OF

b

Let <t, Z—?—};& be any one of the substitutions of the group associated with the

given uniformising variable ¢. Then a Thetafuchsian function T of order m issuch that

L+ b "

We have said that T is to be holomorphic (except at the singularities of the group).
Such functions exist ; for instance, if w be an Abelian integral of the first kind
associated with the curve, then dw/d¢ is a holomorphic Thetafuchsian function of
order one, and (dw/d¢)* is a holomorphic Thetafuchsian function of order two.

To prove the theorem, let
T = 0,0y,

where v, and v, are any two solutions of (1). Then v, and w, have singularities,
considered as functions of ¢, only where T has singularities. But in any one of the
polygons in the ¢-plane, T has no singularities. Therefore, v, and v, are holomorphic
functions of ¢ (except at the essential singularities of the group, which for the
present we do not consider).

Also, v, and dw,/dt cannot be zero together at any point ; for if they were, by
equation (1), v, would be permanently zero. Similarly for v,

Therefore, at all points p within any one of the polygons in the ¢-plane, we have
expansions beginning with

n=c+d{Et—1t)+...,

where ¢ and d are not both zero, and

v, —e+f(t—1t)+ ...,

where ¢ and f are not both zero.

And we may not have d and f zero together, as v, and v, are independent solutions
of the differential equation.

So, at all points except the singularities of the group,

e+ d(t—1t) +...
Te+ St~ + ..

gives either
T:A-{—B(t-—to)-l—‘..,
or,
T=A@l—t)+B{t—t)+...,
or,
A
T::z,

+B4+C(t—t)+...
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In all these cases ¢ and 7 are uniform functions of each other, near the point
considered. So w and z are, near the point, uniform functions of 7. This is easily
seen to be true also of ¢t = x.

Now, let accented letters denote the effect of operating on ¢ with a substitution

tat—l—b
Yot + d

+ T = 0.

of the group.
We have
d=’
ar

Now T == (¢t + d)*T. Write v’ = _£ .

ct +d
Then
P _ “ a0 E N .
=t ar g et ar g (5 )} = @rar G
Therefore
2%
(ct + d) j—; + (¢t + d)*Té = 0,
or
dQ
(—if + Té= 0.

So & = Av, 4+ Buv,, where A and B are constants, and

o == Aot B,

et + d

Therefore
o 'Zi‘ _Aw + By,
= vy, Ay, + By, ’
orT
» AT+ By

— Ag+ B,

3

This shows that, when ¢ is transformed by a projective substitution of the group,
7 is transformed by a corresponding projective substitution

( AT+ Bl)
\T’ Ayt + B,

Thus the theorem is proved, namely, that the dissected Riemann surface can be
conformally represented on a polygon in the r-plane, and the sides of this polygon
can be derived from each other in pairs by certain projective substitutions ; in other
words, 7 is a quasi~uniformising variable. An infinite number of variables = can be
got in this way, for T depends linearly on several arbitrary constants.

E 2
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28 MR. B. T. WHITTAKER ON THE CONNEXION OF

In the above theorem, for the sake of simplicity, we have made a restriction which
is really unnecessary, namely, we have supposed that ¢ is a uniformising variable.
t can, however, be any quasi-uniformising variable if we make the corresponding
extension in the meaning of T. T will now have to be a function of ¢, which is
holomorphic in any of the polygons, and which obeys the law

T(ﬁjz>=gn+dyTu)
for substitutions of the group generated from the substitutions which change the
sides of the ¢-polygon into each other. Such functions exist; for, as before, if w is
an Abelian integral of the first kind connected with the curve, (dw/dt)* is such a
function. T is, of course, really a multiform function of ¢, if ¢ is a quasi-uniformising
variable ; but as it is not possible to pass from one of its values to another by any
paths contained within one of the polygons, we can regard it as uniform within that
polygon. The proof in this extended case is just as before. Thus we have the more
general theorem :
If ¢ is any uniformising or quasi-uniformising variable of an algebraic form

S (u, 2) =0,

and T s any holomorphic Thetafuchsion function of t of order two, then the quotient
of amy two solutions of the dyfferential equation

v

ﬁ;‘i + To =0
s another uniformising or quasi—uniﬁwmising variable.

To complete the theorem, we must prove that the converse is also true. Suppose,

then, that 7 and ¢ both belong to the set of uniformising and quasi-uniformising
variables, so that a polygon in the r-plane corresponds to a polygon in the t-plane,

point for point, and to each of the substitutions of the group <q~, g{-{%i) corresponds
at+ b

> et + d>

Now 7 is the quotient of two integrals of the equation

a substitution (t

Z2
o=
if '

| BT g (@fd)

= =2 @y T % @iy

Now 7 has no branch-point, considered as a function of #, and ¢ has no branch-
point, considered as a function of 7, except at the limiting points of' the groups. So,
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if we consider any point in the t-plane, which is not one of the singularities of the
group, dt/dr and dr/dt are, in its vicinity, regular functions of .

So T is holomorphic at all points except the singularities of the group.

Now, denoting as before the effect of a substitution of the group by accents, we
have
oy Pja g (@]

Z(atjary T (dt|dr)

(B B @y
- <dt> [" % @yjdry + b @tm‘]

= (yt + 8 T.

T =

So, T is a function of ¢ of the kind already specified.

So, the converse of the theorem 1is true.

Thus, of we can find any one quasi-uniformesing varwable of an algebraic form, we
can find the totality of all uniformising and quasi-untformising variables by thus

equation.
We can now find the functions T.
If
Y= at + b ,
ot + d
we have
at 1
G @t
and so

(de)dt'} = (ct + d* (dz/dt)-

Thus (dz/dt)’ is a Thetafuchsian function of order two; any other Thetafuchsian
function of order two can be written in the form

T =R (2, u). (dz/dtY,

where R (7, %) is an automorphic function of the group, t.e., a rational function of the
algebraic form.

If the algebraic form is of genus p, it is known® that any function R (z, u) for
which T is holomorphic is a linear function of (3p — 3) special functions. These we
can write

R, (z,u), Ru(zu), ... Rys(z u)

The case p = 1 is exceptional ; here there is one such function, T, namely, a
constant.

* Humsert, ¢ Liouvinie’s Journal,” (4), vol. 2, p. 239, 1886.
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In general, therefore, we have
T = [aR, (2, %) + @Ry (2, u) 4 . .. 4 0y, ,Ry, 4 (2, )| (dz/dt)?,

where R, (z,u), Rs(z,u),...Ry(2, u) are functions which can be found, and
1y Gy .« . Oly,_y, are arbitrary constants.

We can now find the form of the differential equation which gives all the quasi-
umformising variables. Take any quasi-uniformising variable 7 of the algebraic

equation
f(u,2) = 0.

% i 2} = g{)(z, u)s

For it, we have

where ¢ is some rational function of z and w.
If ¢ is the most general quasi-uniformising variable, we have seen that ¢ is given as
the quotient of two solutions of the differential equation

d/de + Tv = 0,

where
T = [ouRy (2, %) + a.Ro (2, w) + . . . 4+ a5, Ry, (2, w)] (dz/dt)2
Hence
Lo} =T,
But 4
{t,2} = {7, 2} + (dr/dz)* {t, 7}.
Therefore
5 {t, 2} = ¢ (2, u) + T (dr/dz),
or ‘

it 2} = (2 u) + Ry (2, u) + Ry (% ) + . .. + a5,_sRey_s (2, %).

Thus, the solution of the problem of finding oll the variables t, which will con-
Jormally represent the Riemann surface of a giwen algebraic form on o curvilinear
polygon, whose sides are derived from each other in pairs by projective substitutions,
18 gwen by a dufferential equation contarning (3p — 3) arbitrary parameters linearly,
and the problem of finding the uniformising variable is equivalent to that of deter-
mining these parameters in order that that group generated by these substitutions may
be duiscontinuous.

Now let us return to the differential equation of § 5, which we can write

— 2 1 dPu
1 P _’)’b _ a2 n—3
Z{T’w}_8(n+l)udw2+klé N X Sl NIV S

If we take any set of values %k, &, . . . k,_, for the undetermined constants,
this differential equation will give a variable = in terms of 2z, which will not in
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general be the variable ¢ of §§ 3 and 4. But the variables = so found will solve the
problem of conformally representing the z-plane, regarded as bounded by a number
of finite lines radiating from a point, on a curvilinear polygon in the =-plane, such
that the sides of the boundary can be transformed into each other in pairs by
certain projective substitutions. The variable ¢ is one of these variables, characterised
by the condition that the infinite group generated from these substitutions is a
discontinuous group.
We can, in fact, find the functions T in this case. We must have

dz\?
T =R (x) ( Zz’t‘> ,
and R (z) must be such that T is holomorphic. So the only possible poles of R (z)
are the places where dz/dt is zero, i.e., the places z =1e;, e, ... €5 At these
places dz/dt is zero of the first order : so (dz/dt)* is zero of the second order, and
R (2) may have a pole of the second order.
Therefore

where

wW=(z—e)(z— ¢)...(z— e ),

and T (2) is an integral function of z. At 2z = oo, dz/dt has a pole of the second
order, and »* a pole of the (n 4 2)" order. So I (2) may have a pole of the
(n — 2)™ order. ’
Therefore
T()=ke "+ k™ + ... + k.

and

T = kg™ 4+ " o+ Ky [dR\?
_ o w? dt)’

Thus if 7 is the quotient of two solutions of the equation

dv/de* + Tv = 0
and ¢ is defined by the equation

3 {t,2} = R (2),
then 7 is detined by the equation

B + K= 4. K,
Linz}=R@E)+ 0T

¢ Vn—1

w?

Comparing this with the equation of § 5, we see that the variables ¢t given by it,
when the constants ky, ks, . . . k,_,, are arbitrary, are the quasi-uniformising variables,
We can now prove that the number of conditions which have to be satisfied in
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order that the group of substitutions of ¢t may be discontinuous, v.e., in this case may
conserve a fundamental circle, is equal to the number of the constants £.
In order that a self-inverse substitution with complex coefficients,

( f e+l
ot —a)’

N

may leave unchanged a given circle, two of the four real constants contained in the
substitution must be determinate in terms of the others.

Now there are (n 4 2) fundamental self-inverse complex substitutions, containing
4 (n 4 2) real constants ; of these, the relation

SISQ}« 3¢ oo S,H.g = 1

accounts for six. So (2n + 1) of the real constants are determined in terms of the
other (2n -+ 1) by the condition that the group is to conserve a fundamental circle ;
but as the fundamental circle may be any whatever, and so involves three constants,
we must deduct three from the number of equations, giving (27 — 2). Thus, 2n — 2
real, or n — 1 complex, constants can be determined from the condition that the
substitutions of ¢ conserve a fundamental circle.  This accords with the fact, otherwise
arvived at, that the constants ky, ks, . . . k,_., in the differential equation have to be
determined from this consideration.

Among the quasi-uniformising variables of any algebraic form there are several
distinct uniformising variables. The groups we have found in § 3 have simply-
connected fundamental polygons. But automorphic functions exist, for which the
fundamental polygons are multiply-connected.

The simplest example of such a function is

Ty
z =P <; log zf> ,

where P is Weierstrass’ elliptic function with periods 2w, and 2w, ; the fundamental
polygon is the space between two circles in the ¢-plane.

The automorphic functions studied by Scuorrky, WEBER, and BURNSIDE may be
regarded as generalisations of this. As these uniformising variables with multiply-
connected fundamental polygons are included in the general set of quasi-uniformising
variables, they are defined by the same differential equations as the uniformising
variables with simply-connected polygons, except that the constants £ will have
different values.
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